UNIVERSITY of FLORIDA

Analyzing the Digestive Process of Carnivorous Plants

Introduction

- Carnivorous plants are plants that are capable of trapping and consuming prey in order to get the nutrients they need
- Each species of carnivorous plant digests insects in different ways
- The digestive enzymes of Nepethes are similar to that of a human, meaning this plant can be used in human medicines

Background

Scientists have studied how carnivorous plants get their food for decades, however, it wasn't until recently that they began studying the digestive enzymes

•

٠

- Plants have mechanisms to protect themselves from predators. It is believed that carnivorous plants evolved to do the opposite; To become the predator instead of the prey (ncbi.nlm.nih.gov) Scientists have learned that some carnivorous
- plants produce their own enzymes, while others rely on bacteria to produce enzymes for them(carnivorousplants.org)

Question

What factors play a role in the digestive process of carnivorous plants?

Trapping Methods

The purpose of these methods is to trap prey in order to later get nutrients

- Sealed Traps
 - Dionaea, Aldrovanda
- Water Pools
 - Nepenthes, Cephalotus, Heliamphora
- Partner Organisms
 - Byblis, Darlingtonia, Roridula
- Leaf Surfaces
 - Drosera, Drosophyllum, Triphyophylum, Byblis
- Pits
 - Genlisea

Figure 1 shows several of the trapping methods

(Paginski, 2021)

Enzymes

- The digestive enzymes are secreted from glands and dissolve proteins so the plant can absorb the nutrients
- Phosphatase
- Protease
- Chitinase
- Glucanase Esterase
- Peroxidase
- Nucleas
- Glucosaminidase
 - Glucosidase
 - Amylase
 - Lipase
 - Ribonuclease
 - Phosphoamidase

•

	D. rotundifolia	
	D. villosa	
	D. peltata	
*	Utricularia spp.	Lentibulariacea
*	G. aurea	
*	U. multifida	
*	U. foliosa	
*	U. australis	
*	S. purpurea	Sarraceniaceae
	Sarracenia spp.	
	D. californica	
	H. tatei	
	S. psittacina	
*	N. alata	Nepenthaceae
*	N. bicalcarata	

Cephalotaceae

Droseraceae

C. follicularis

D. muscipula

D. capensis

N. × ventrata N. albomarginata

Did you know?

Digestive enzymes were first

There are over 700 species of

observed on Nepenthes

carnivorous plants

- Xylosidase
- Urease

Take Home Message

Figure 2 shows the digestive enzymes of 5 carnivorous plant families

Enzyme category

Carnivorous plants have developed in ways that ensure their own survival. With further studies, carnivorous plants can be beneficial in furthering human medicine.

References

Carnivorous plant digestion and NUTRIENT ASSIMILATION. (n.d.). Retrieved April 16, 2021, from https://www.carnivorousplants.org/cp/carnivory/digestion Renner, T., & Specht, C. (2013, August). Inside the trap: GLAND Morphologies, digestive enzymes, and the evolution of plant carnivory in The caryophyllales. Retrieved April 16, 2021, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820484/